Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.
drug_cos.csv
,health_cos.csv
in to R and assign to the variables drug_cos
and health_cos
,respectivelyglimpse
to get a glimpse of the dataRows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New …
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366…
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666…
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163…
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321…
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti…
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000, …
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000, …
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3640…
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3390…
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000, …
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, …
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, …
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dru…
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug,names_health)
[1] "ticker" "name" "year"
For drug_cos
select (in this order) ticker
,year
,grossmargin
Extract observations for 2018
Assign output to drug_subset
For health_cos
select(in this order) ticker
,year
,revenue
,gp
,industry
Extract observations for 2018
Assign output to health_subset
drug_subset
join with columns in health_subset
# A tibble: 13 × 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5825000000 3914000000 Drug Manufacturer…
2 PRGO 2018 0.387 4731700000 1831500000 Drug Manufacturer…
3 PFE 2018 0.79 53647000000 42399000000 Drug Manufacturer…
4 MYL 2018 0.35 11433900000 4001600000 Drug Manufacturer…
5 MRK 2018 0.681 42294000000 28785000000 Drug Manufacturer…
6 LLY 2018 0.738 24555700000 18125700000 Drug Manufacturer…
7 JNJ 2018 0.668 81581000000 54490000000 Drug Manufacturer…
8 GILD 2018 0.781 22127000000 17274000000 Drug Manufacturer…
9 BMY 2018 0.71 22561000000 16014000000 Drug Manufacturer…
10 BIIB 2018 0.865 13452900000 11636600000 Drug Manufacturer…
11 AMGN 2018 0.827 23747000000 19646000000 Drug Manufacturer…
12 AGN 2018 0.861 15787400000 13596000000 Drug Manufacturer…
13 ABBV 2018 0.764 32753000000 25035000000 Drug Manufacturer…
*Start with drug_cos
Extract observations for the ticker MRK from drug_cos
Assign output to the variable drug_cos_subset
*Display drug_cos_subset
drug_cos_subset
# A tibble: 8 × 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc… New Jer… 0.305 0.649 0.131 0.15 0.114
2 MRK Merc… New Jer… 0.33 0.652 0.13 0.182 0.113
3 MRK Merc… New Jer… 0.282 0.615 0.1 0.123 0.089
4 MRK Merc… New Jer… 0.567 0.603 0.282 0.409 0.248
5 MRK Merc… New Jer… 0.298 0.622 0.112 0.136 0.096
6 MRK Merc… New Jer… 0.254 0.648 0.098 0.117 0.092
7 MRK Merc… New Jer… 0.278 0.678 0.06 0.162 0.063
8 MRK Merc… New Jer… 0.313 0.681 0.147 0.206 0.199
# … with 1 more variable: year <dbl>
*Use left_join to combine the rows and columns of drug_cos_subset
with the columns of health_cos
*Assign the output to combo_df
*Display combo_df
combo_df
# A tibble: 8 × 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc… New Jer… 0.305 0.649 0.131 0.15 0.114
2 MRK Merc… New Jer… 0.33 0.652 0.13 0.182 0.113
3 MRK Merc… New Jer… 0.282 0.615 0.1 0.123 0.089
4 MRK Merc… New Jer… 0.567 0.603 0.282 0.409 0.248
5 MRK Merc… New Jer… 0.298 0.622 0.112 0.136 0.096
6 MRK Merc… New Jer… 0.254 0.648 0.098 0.117 0.092
7 MRK Merc… New Jer… 0.278 0.678 0.06 0.162 0.063
8 MRK Merc… New Jer… 0.313 0.681 0.147 0.206 0.199
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
*Note the variables ticker
,name
,location
and industry
are the same for all the observations
*Assign the company name to co_name
*Assign the company location to co_location
group
*Assign the industry to co_industry
group
Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Merck & Co Inc is located in New Jersey; U.S.A and is a member of the Drug Manufacturers - General industry group.
*Start with combo_df
*Select variables (in this order):year
,grossmargin
,netmargin
,revenue
,gp
,netincome
*Assign the output to combo_df_subset
*Display combo_df_subset
combo_df_subset
# A tibble: 8 × 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
*Create the variable grossmargin_check
to compare with the variable grossmargin
. They should be equal. grossmargin_check
= gp
/revenue
*Create the variable close_enough
to check that the absolute value of the difference between grossmargin_check
and grossmargin
is less than 0.001
combo_df_subset %>%
mutate(grossmargin_check = gp/revenue,
close_enough=abs(grossmargin_check-grossmargin)<0.001)
# A tibble: 8 × 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
# … with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
*Create the variable netmargin_check
to compare with the variable netmargin
. They should be equal.
*Create the variable close_enough
to check that the absolute value of the difference between netmargin_check
and netmargin
is less than 0.001
combo_df_subset%>%
mutate(netmargin_check=netincome/revenue,
close_enough=abs(netmargin_check-netmargin)<0.001)
# A tibble: 8 × 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
# … with 2 more variables: netmargin_check <dbl>, close_enough <lgl>
*Fill in the blanks
*Put the command you use in the Rchuncks in the red file for this quiz
*Use the health_cos
data
For each industry calculate mean_grossmargin_percent = mean(gp/revenue)100 median_grossmargin_percent = median(gp/revenue)100 min_grossmargin_percent = min(gp/revenue)100 max_grossmargin_percent = max(gp/revenue)*100
health_cos %>%
group_by(industry) %>%
summarize(mean_grossmargin_percent=mean(gp/revenue)*100,
median_grossmargin_percent=median(gp/revenue)*100,
min_grossmargin_percent=min(gp/revenue)*100,
max_grossmargin_percent=max(gp/revenue)*100
)
# A tibble: 9 × 5
industry mean_grossmargi… median_grossmar… min_grossmargin…
<chr> <dbl> <dbl> <dbl>
1 Biotechnology 92.5 92.7 81.7
2 Diagnostics & Re… 50.5 52.7 28.0
3 Drug Manufacture… 75.4 76.4 36.8
4 Drug Manufacture… 47.9 42.6 34.3
5 Healthcare Plans 20.5 19.6 10.0
6 Medical Care Fac… 55.9 37.4 28.1
7 Medical Devices 70.8 72.0 53.2
8 Medical Distribu… 10.4 5.38 2.49
9 Medical Instrume… 53.9 52.8 40.5
# … with 1 more variable: max_grossmargin_percent <dbl>
*Fill in the blanks
*Use the health_cos
data
*Extract observations for the ticker ILMN from health_cos
and assign to the variable health_cos_subset
*Display health_cos_subset
health_cos_subset
# A tibble: 8 × 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ILMN Illumina … 1.06e9 7.09e8 1.97e8 86628000 2.20e9 1120625000
2 ILMN Illumina … 1.15e9 7.74e8 2.31e8 151254000 2.57e9 1247504000
3 ILMN Illumina … 1.42e9 9.12e8 2.77e8 125308000 3.02e9 1485804000
4 ILMN Illumina … 1.86e9 1.30e9 3.88e8 353351000 3.34e9 1876842000
5 ILMN Illumina … 2.22e9 1.55e9 4.01e8 462000000 3.69e9 1839194000
6 ILMN Illumina … 2.40e9 1.67e9 5.04e8 454000000 4.28e9 2011000000
7 ILMN Illumina … 2.75e9 1.83e9 5.46e8 725000000 5.26e9 2508000000
8 ILMN Illumina … 3.33e9 2.3 e9 6.23e8 826000000 6.96e9 3114000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
In the console, type ?distinct
.Go on to the help pane to see what distinct
does In the console, type ?pull
.Go to the help pone to see what pull
does
Run the code below
*Assign the output to co_name
You can take output from your code and include it in your test
*The name of the company with ticker Illumina Inc is Drug Manufacturers - General
In the following chunk
co_industry
This is outside the Rchunck. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Illumina Inc is a member of the Diagnostics & Research group.
-start with health_cos THEN
-group_by industry THEN
-calculate the median research and development expenditure by industry
-assign the output to df
glimpse
to glimpse the data for the plotsRows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Drug…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, …
-use ggplot
to initialize the chart
-data is df
-the variable industry
is mapped to the x-axis
-reorder it based the value of med_rnd_rev
-the variable med_rnd_rev
is mapped to the y-axis
-add a bar chart using geom_col
-use scale_y_continuous
to label the y-axis with percent
-use coord_flip()
to flip the coordinates
-use labs
to add title,subtitle and remove x and y-axes
-use theme_ipsum()
from the hrbrthemes package to improve the theme
ggplot(data=df,
mapping = aes(
x=reorder(industry,med_rnd_rev),
y=med_rnd_rev
))+
geom_col()+
scale_y_continuous(labels = scales::percent)+
coord_flip()+
labs(
title="Median R&D expenditures",
subtitle= "by industry as a percent of revenue from 2011 to 2018",
x=NULL , y=NULL)+
theme_ipsum()
-start with the data df
-use arrange
to reorder med_rnd_rev
-use e_charts
to initialize a chart
-the variable industry
is mapped to the x-axis
-add a bar chart using e_bar
with the values of med_rnd_rev
-use e_flip_coords()
to flip the coordinates
-use e_title
to add the title and the subtitle
-use e_legend
to remove the legends
-use e_x_axis
to change format of labels on x-axis to precent
-use e_y_axis
to remove labels on y-axis
-use e_theme
to change the theme. Find more themes here
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x=industry
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expendituries",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left= "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter=e_axis_formatter("percent",digits = 0)
) %>%
e_y_axis(
show=FALSE
) %>%
e_theme("vintage")